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The stability of a water drop oscillating with 
finite amplitude in an electric field 

By P. R. BRAZIER-SMITH? 
National Center for Atmospheric Research, Boulder, Colorado 

(Received 10 November 1970 and in revised form 13 May 1971) 

By assuming that an uncharged drop situated in a uniform electric field E retains 
a spheroidal shape while oscillating about its equilibrium configuration, two 
approximate equations of motion are derived for the deformation ratio y ex- 
pressed as the ratio alb of the major and minor axis of the drop. Solutions of 
these equations of motion indicate that the stability of a drop of undistorted 
radius R and surface tension T depends upon E(R/T)S and the initial displacement 
of y from its equilibrium value. The predictions of the two equations are com- 
pared to assess the accuracy of the spheroidal assumption as applied to such a 
dynamical situation. The analysis is used to determine the stability criterion of a 
drop subject to a step function field. Finally, the limit of validity of the spheroidal 
assumption is discussed in terms of Rayleigh’s criterion for the stability of 
charged spherical drops. By applying Rayleigh‘s criterion to the poles of a 
spheroidal drop, the stage at which the drop departs from spheroidal form to 
form conical jets was approximately determined. 

1. Introduction 
The behaviour of isolated water drops in electric fields was first studied by 

Zeleny (1915). He attempted to adopt Rayleigh’s (1882) criterion for the stability 
of a charged drop to the poles of drops in electric fields to study the stability of 
spheroidal drops in electric fields. Although Zeleny’s criterion for the stability of 
such drops was shown by Taylor (1964) to be incorrect, Zeleny did demonstrate 
in a later paper (1917) that disintegration of these drops was a result of hydro- 
dynamic instability. Since then, this problem has been studied experimentally 
by several workers, notably Nolan (1926), Macky (1931) and Ausman & Brook 
(1967), and the approximate empirical relation E(R/T)i  = 1.6 was established 
between the external field E,  expressed in electrostatic units, required to disinte- 
grate a drop of undistorted radius R and surface tension T .  Taylor (1964) treated 
the problem theoretically by assuming that the drop retained a spheroidal shape 
until it reached the instability point and that the equations of equilibrium be- 
tween the stresses due to surface tension and electric field were satisfied at  the 
pole and at  the equator. He calculated that the onset of instability occurs when 
E(R/T)* = 1.625 and the deformation y, expressed as the ratio a/b of the semi- 
major to semi-minor axes is equal to 1.86. These predictions, which are in good 
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agreement with the theoretical results of Brazier-Smith (1971) who calculated the 
exact shape of uncharged drops in electric fields, are also borne out by the experi- 
mental studies of Nolan, Macky and Ausman & Brook and the studies of Wilson 
& Taylor (1925) on the bursting of soap bubbles in electric fields. 

The present study illustrates how the spheroidal assumption, utilized by 
Taylor to determine the equilibrium of an uncharged drop in an electric field, can 
be applied to determine the dynamic behaviour of such a drop not in equilibrium. 
The other assumptions required are that the flow within the drop is irrotational 
and that viscous damping is negligible. For justification of the last two assump- 
tions, the reader is referred to Lamb (1932), where it is demonstrated that the 
damping period of the fundamental mode of an oscillating water drop ia large 
compared to its periodic time for drop radii normally encountered. 

2. The mathematical approach 

given by the Bernoulli equation 
The condition of irrotational flow within the drop allows the pressure P to be 

p 84 - +at + &(V$)2 = constant, 
P 

where qi is the velocity potential and p the fluid density. 

satisfied if the surface is given by the equation 
The assumption that the drop remains spheroidal during any deformation is 

when referred to a cylindrical co-ordinate system ( r ,  2). Hence the undistorted 
radius R of the drop is given by 

R3 = ab2. 

The geometry of the system is Bhown in figure 1. The constraints that the flow is 
incompressible and the drop remains spheroidal means that the velocity field must 

(354) 
necessarily take the form 

where vr and v, are the radial and axial velocity components respectively and A 
is a function of time only. Equations (3) and (4) integrate readily to give the 
velocity potential qi = iA( z2  - &r2) + c. 

It follows from (5) and (1) that the pressure within a drop, in which only incom- 
pressible irrotational flow occurs and only spheroidal deformation are permitted, 
is given by P/p = - &(dA/dt)  (9 - &rz) - +12(z2 + &r2) + c. 

In  fact, (6) is a restricted form of the equation derived by Dirichlet for the 
pressure inside a liquid ellipsoid oscillating by virtue of its gravitational field; 
the complete formulation is given by Lamb (1932). The restrictions imposed upon 
Dirichlet’s equation are that the flow is axisymmetric and the gravity potential is 
absent. 

vr = - A&r, v, = Az, 

( 5 )  

(6) 
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FIGURE 1. The geometry of the system. 

3. Derivation of the equation of motion 
The polar and equatorial pressures of a prolate spheroidal drop when an 

electric field E is applied in the direction of its axis was shown by Taylor (1964) 
to be 

a E2a2 
b2 87rb2( 1 - e2)P’ 

P, = 2 T - -  (7) 

where I = 0*5e-3 In {( 1 + e ) / (  1 - e ) }  - e-2 and e = ( 1  - b2a-2)i. 2a and 2b are, 
respectively, the distance between the poles of the drop and its equatorial dia- 
meter. Substituting (6) into (7) and (81, and eliminating the constant c yields the 
following equation in A 

(P, - P,)/p = - &(dA/dt)  {a2&b2} - &A’{U’- @2}. (9) 

At this point it is useful to define the deformation ratio of the drop as y = a/b 
whence a = RyQ and b = RyA.  The condition that ( 2 )  shall continue to represent 
the surface through time requires that 

z2 da r2db z (“z -+- “j - 2  - [ ---___ 
a2 b2 

which, combined with (3) and (4), yields 

I d a  2 d b  
a dt b dt ’ 

A = -- = _ _ _  (10) 
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Substitution of (10) into (9) and rewriting in terms of y yields equation of motion 

This equation may be non-dimensionalized by putting t' = wt, where w is the 
angular frequency of the fundamental mode of an isolated drop as calculated by 
Rayleigh (1879) and is given by 

Rewriting (1 1)  in terms oft' and making the appropriate substitution for Pp and 
P, from (8) and (9), the equation becomes 

day - (+y2++)  dy a _ 3 y ( 2 y " E ~ y ~ / 8 n 1 2 - l / y - y )  

w2 = 8T/R3p. 

3 (12) dt'z - y m )  (a?) 8(Y2 + Q) 
where E, = E(R/T)&. 

Equation (12) is an approximate equation of motion of a drop deforming in an 
electric field, subject to the constraint that the drop remains spheroidal. 

A useful check on the accuracy of (12) for describing the motion of a drop 
excited in its fundamental mode is to derive another approximate equation of 
motion using an independent method and compare their solutions. Such a method 
may use the potential and kinetic energies of a deforming spheroidal drop in an 
electric fleld. The expression for potential energy B of a spheroidal conducting 
drop immersed in an electrostatic field E has been calculated by O'Konski & 
Thacher (1953) and is given by 

where t̂  = y2 - 1. The kinetic energy X of a drop oscillating in its spheroidal 
mode was shown by Billings & Holland (1969) to be 

and since the system is closed, the total energyy is constant, therefore 

9 +X= F (constant) 

or dB/d t  + d X / d t  = 0. (15) 

Substituting (13) and ( 14) into (15) and cancelling throughout by dy/dt yields the 
second approximate equation of motion: 

which, of course, may be put in dimensionless form as was (1 1). We note that the 
inertial terms [i.e. the coefficients of (dy/dt)2] in (11) and (16) are identical and 
that the only essential difference between the two equations is the forcing terms. 
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4. Integration of the equations of motion 
Since the analytical integration of the two equations of motion would have 

been extremely tedious, numerical methods were employed for their solution. 
The equations of motion yield their solutions readily by specifying y and dyldt' 
at time t' = 0 and application of a marching process, or one-step method. If 
yo and vo are the values assigned to y and dyldt' at zero time then the marching 
process adopted may be described by the following equations which apply to the 
nth step: 

(17) 

vn+1 vn + (an + &,)A7 (18) 

where A = time difference between each step, 

vn = dy/dt' at the nth step, 

a, = d2y/dtr2 at the nth step, 

g, = a, - E (d3y/dt'3)A. 

Equations (17) and (18) correspond to the first few terms of a Taylor series, 
namely 

and 

dy 1d2y 1 d 3 y  
dt' 2dt'Z 6dt'3 

~ ( t '  + A )  N y ( t ' )  +-A + - -A2+- - A3 

* ( t ' + A )  N dy @ ( t ) + -  d 2 y A + - _ A 2 .  1 d3y 
dt' dt'2 2d t t3  

At each step y, and v, are given by the previous step and a, is derived analyti- 
cally from the appropriate equation of motion. 

When the above scheme was applied to solve the simple harmonic equation, 
which is similar to our equations of motion, it was found to provide solutions 
that were accurate to 0.01 yo for a time increment of l / l O O  the period. 

If we assume that the period of the drop in an electric field is of the same order 
as the period r of an isolated drop then A may be taken to be a suitable fraction 
of r .  In  terms of the parameter t' the period of an isolated drop is 2n and, on this 
basis, the value of A was chosen to be 0.001 nor 7/2000 which ismuch smaller than 
the time period used for solving the simple harmonic equation. 

5. Solutions 
The solutions of (1  1 ) and (1 6) may be determined completely by two dimension- 

less parameters. For the first parameter we have a choice between three depen- 
dent quantities, namely, the maximum value of y, y m a x ,  the minimum value of 
y, Ymin and finally yd = Ymax-ymin .  The second parameter may be either the 
equilibrium deformation ye or the dimensionless field En. The predicted varia- 
tion of ye with En will depend upon which equation of motion we adopt; if (1  1) is 
adopted then the variation of ye is as computed by Taylor (1964) and if (16) is 
adopted then the variation is as computed by Rosenkilde (1969). Both results are 
illustrated in figure 2 and can be seen to correspond very closely. Also shown on 
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the figure is the variation of the deformation required to produce a zero pressure 
at  the poles of the drop (Zeleny's criterion) with applied field. The reason for 
its inclusion is discussed later. 

Figure 3 shows three solutions of (12) for ymin = 1.0, 1.1 and 1.2. In  all three 
cases ye = 1.6, E, = 1.559. It is apparent from the figure that yd has a critical 
value for which the solutions undergo a transition from periodic to asymptotic 
form. 

7.0 

5.0 

YE 

3.0 

1 *o 

El8 
FIGTJRE 2. The variation of ye with En. Solid line represents approximation I; dashed line 

represents approximation I1 and the third line is Zeleny's criterion. 

To obtain a better physical picture of the critical transition of the solution 
from periodic to asymptotic, one more parameter, the non-dimensional frequency 
f,, of the drop is required. Its defining equation is 

f, = ~ j ' ( R ~ p / 2 T ) $ ,  

where f is the dimensional frequency of the drop. The dimensionless frequency for 
a drop oscillating with small amplitude in the absence of any electric field will 
therefore be f, = 1.  By generating more solutions to (12) and (16), two approxi- 
mate values off, may be found for various values of yd and ye. The variation of 
f, with yd, as computed from (12) and (16) for various values of ye,  is illustrated in 
figure 4. We shall refer subsequently to (1 1) and (16) and the related solutions as 
approximations I and 11. The figure illustrates that there is good agreement 
between the two frequencies as predicted by approximations I and I1 for small 
amplitudes of oscillation. As yd increases, however, the disparity between the 
two approximations increases. For, yd = 1 the increase in error is about 0.05 f,,, 
where f,, is the fundamental frequency as calculated by Rayleigh (1879). The 
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t' 

FIGURE 3. The variation of deformation y of a drop with time t' according to approximation 
I, for ymin = 1.0, 1.1 and 1.2. In all three cases, y. = 1-5. 

0 2.0 3.0 4.0 

Y d  

FIGURE: 4. The dimensionless frequencyf,, as a function of yd for various values of y.. Solid 
line represents approximation I ; dashed line represents approximation 11. 
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degree of agreement between the two approximations for yd tending to zero is 
better illustrated in figures 5 and 6 which show the variation off, with ye and En 
respectively for the limit yd = 0. For this limit, the frequency f, for approximation 
I tends to  the frequency of small amplitude oscillations as calculated by Brazier- 
Smith et al. (1971); similarly approximation I1 tends to the frequency as predicted 
by Rosenkilde (1969) who used a method described by Chandrasekhar (1961, 
1965, 1969) for the analysis of fluid problems. 
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FIGURE 5. The variation of f n  for small amplitudes with ye. Solid line represents 
approximation I ; dashed line represents approximation 11. 

En 

FIGURE 6. The variation of f, for small amplitudes with E,. Solid line represents 
approximation I ; dashed line represents approximation 11. 
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6. Instability criteria 
In the last section, we observed that solutions of (12) and (16) are either periodic 

or asymptotic depending upon yd and En, thus determining whether the drop is 
stable. Figure 4 illustrates that the transition from stable to unstable state 
occurs when f, becomes zero. However, there is another way of looking at this 
instability. Taylor (1964) showed that as illustrated in figure 2, there are two 
equilibrium deformations ye for a drop situated in an electric field En. One is 
stable, in which ayelaEn is positive and the other is unstable. If a drop possesses a 

" 
0.9 1.0 1.1 1.2 1.3 1.4 1 . 5  1.6 1.7 

E,  

FIGURE 7. The variation of critical values of ymx and ydn against En. Solid line represents 
approximation I ; dashed line represents approximation 11. 

deformation such that y,(unstable) > y > ?,(stable) and dy/dt = 0 then the drop 
will move back towards the stable equilibrium. The condition that a drop should 
become unstable is that it has sufficient kinetic energy in its n = 2 mode to reach 
the unstable equilibrium point. This is well illustrated in figure 7 which shows the 
critical maximum and minimum values of y for approximations I and I1 for the 
drop to be just stable. It can be seen that the critical maximum values of y for 
approximations I and I1 correspond exactly with the two approximate unstable 
equilibrium values shown in figure 2. 
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7. Behaviour of drops in step function fields 
Since the equilibrium shape of a drop in an electric field is very nearly spheroidal 

for all stable shapes, the effect of suddenly changing, or applying an electric field 
to a drop in equilibrium will be primarily to excite the n = 2 mode; the relative 
excitation of higher modes will be very small. The importance of considering this 
problem arises because of two reasons. (i) The sudden rearrangement of charge 
accompanying a lightning discharge will cause sudden changes in the electric 
field. This in turn will cause drops to vibrate in their spheroidal mode and it has 
been shown by Brook & Latham (1968) that it  ie in principle possible to determine 
the frequency and magnitude of these vibrations by analysing the return signal 

4 

3 

2 

1 
0 I 2 3 4 

Yd 
FIGURE 8. The variation of ym, with ya for various values of ye. Solid line represents 

approximation I ; dashed line represents approximation 11. 

from a radar beam. Thus, it may be possible to obtain considerable information 
concerning the mechanism of charge drainage and the lightning stroke itself. 
(ii) Anumber of experimental studies have been carried out (notably Macky 1931) 
to establish the criteria for stability of drops in electric fields that involve the 
sudden application of an electric field. If their results are to be reconciled with the 
quasi-static instability criterion then the inertial effect will, as pointed out by 
Ausman & Brook (1967), have to be taken into account. 

In  order to determine the frequency of oscillation of a drop when the applied 
field is suddenly changed, it is necessary to find the maximum and minimum 
values of deformation, ymax  and ymln for a drop oscillating with finite amplitude 
yd about a given equilibrium deformation ye. This may be done by referring to 
figure 8 which shows the variation of Ymax with yd for values of ye. We now note 
that the electric field before the change is that field required to produce an 
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equilibrium deformation of either ymin or ymax depending upon whether the field 
is stepped up or down: the field after the change is then that field required to 
produce an equilibrium deformation of ye. The oscillation frequency of a drop may 
then be determined by fbding ymax or ymin, whichever is appropriate from 
figure 8, in conjunction with figure 2: the frequency can then be read directly 
from figure 4 for the selected values of yeye 

If  the electric field is stepped down then the only effect on the drop present will 
be to cause it to oscillate. However, if a field is stepped up, .it is possible that the 
drop may break up depending upon whether ymin (the equilibrium deformation 
before the increase in field) is less than the critical minimum value of y as illus- 
trated in figure 7. On this basis, we can calculate the critical condition that a 

~ 

0 0 2 0 4  0 6  0.8 1.0 1.2 1 4  1.6 1.8 

E:, 
FIGURE 9. The variation of the critical field E ,  applied impulsively to disrupt a drop in a 
field E:. Solid line represents approximation I ; dashed line represents approximation I1 

dimensionless field Ek will disrupt a drop when it is suddenly increased to a value 
of En, This critical condition is illustrated in figure 9 which shows the variation 
of the critical value of E, with EA for approximations I and 11. Again, the indica- 
tion is that the degree of correspondence of the two approximations is good. One 
result is that the critical value of E, required to break up a drop if it is suddenly 
applied to a drop initially in zero electric field lies between 1-50 and 1.53. This is 
especially interesting since Macky’s (1931) experimental work on the break up of 
drops as they fall between parallel capacitor plates, resulting in such a suddenly 
applied electric field, predicted that E,  = 1.51 for a drop to break up, which lies 
between the two values determined from approximations I and 11. This close 
correspondence of Macky’s value of E, and the two values determined above 
provides evidence for the preceding analysis. 
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8. Instability and excitation in the higher modes 
The onset of instability in modes higher than the spheroidal mode has been 

observed by Zeleny (1917), Macky (1931) and others to occur soon after the onset 
of instability in the spheroidal mode. Although Taylor (1964) showed theoretically 
that the final result of higher modal instability is the formation of conical ends to 
the drop, no work has been done to determine satisfactorily at  what point the 
higher modal instability is initiated, which must be known in order to delimit the 
acceptable range in which (12) and (16) are valid. While it is desirable to deter- 
mine this point exactly, we shall, because of the complexity of the problem, have 
to rely in some degree upon qualitative arguments and scanty experimental 
results to establish approximately where this point lies. 

Rosenkilde (1969) puts an upper limit on y, for the spheroidal assumption to 
be valid, when SPdV over the volume of the drop becomes zero. Using this 
criterion for a drop immersed in an electric field of strength given by 

E(R/T)t = 1.6, 

the spheroidal assumption becomes invalid at  y = 4.5. Since no cases have been 
recorded where spheroidal conducting drops attain such deformations, we can 
conclude that higher modal instability sets in before Rosenkilde’s limit is 
reached. 

To obtain some idea of the criterion for the onset of instability of higher modes, 
we shall invoke Rayleigh’s (1 882) criterion for the stability of a spherical con- 
ducting drop carrying an electric charge. In  terms of its radius R, surface tension 
T and the field E on the surface induced by the charge, this criterion is 

E2/16n < T/R. 

If this inequality is not satisfied, then Rayleigh’s analysis predicts that at  least 
the spheroidal mode, whose wavelength is n-R, is unstable. By applying this 
criterion to the pole of a spheroidal drop, where the radius of curvature is b2/a, we 
obtain the following criterion 

E2a2/8nb2( 1 - e2)I < 2Ta/b2. (19) 

All the symbols correspond to those used in (8). If this inequality is not satisfied 
then, in so far as Rayleigh’s criterion can be carried over to this case, there will be 
an unstable mode of wavelength n-b2/a which is shorter than the wavelength of the 
spheroidal mode; therefore a higher mode has become unstable and the spheroidal 
assumption is invalid. The above criterion is, of course, the same criterion that 
Zeleny (1915) mistakenly used for the stability of spheroidal mode and is illu- 
strated in figure 2. 

The flaw in the above argument lies in the fact that Rayleigh’s criterion applies 
over the entire surface of a spherical drop while the criterion expressed by (19) 
applies only a t  the poles. However, some experimental data has been obtained 
which will help us to establish where higher model instability sets in. Macky 
(1931) reports that the drops used in his experiments achieved deformations of y 
between 3 and 4 before the drop exhibited high mode instability. In  fact, his 



The stability of a. water drop in an electric field 429 

photographs indicate that the figure is probably nearer 3 than 4. Since his drops 
became unstable at  field strength of En = 1-51, we have established one point 
for the instability which we shall take as y = 3, En = 1.51. In  their experiments, 
Ausman & Brook (1967) report that y = 2.2 when high mode instability occurs 
and their value of En was 1.56 k 0.1. These two results suggest that the instability 
of the higher modes is initiated somewhere between Taylor’s unstable equilibrium 
point and Zeleny’s criterion. 

It may be possible to resolve the problem of onset of instability of the higher 
modes by the following consideration. The general solution for the velocity 
potential within a prolate spheroidal boundary is, as given by Lamb (1932), 

$ = P,(,u)P,(S). (20) 

,u and 6 are ellipsoidal co-ordinates and satisfy the following: 

where k = (a2- b2)4. 
The surface of the drop is defmed by < = a/k. The special case of n = 2, giving 

( 5 ) ,  is that dealt with in the present paper. Velocity potentials of the form given 
by (20) for n > 2 correspond to higher modal excitation and their analysis may 
yield information about the stability of the higher modes. 

The problem of a drop oscillating in its fundamental mode is, of course, a 
non-linear one and one would intuitively expect that, for spheroidal oscillations 
offinite amplitude, there will be some coupling between the spheroidal and higher 
modes. This has been borne out by some studies by G.Brant Foote (private 
communication) on finite amplitude oscillations of drops under the action of 
surface tension. In  fact, the divergence of the two approximations with increasing 
amplitude as shown in figure 4 is indicative of the increasing coupling with 
amplitude, the effect of which will be the removal of energy from the n = 2 mode 
to the higher modes where viscoua damping will be more efficient. Therefore 
the large amplitude oscillations will be more difficult to achieve and maintain; in 
fact the largest oscillations recorded are by Jones (1959) who reported values of 
0.9 for yd. Therefore the present calculations cannot be considered realistic 
beyond this point. 

z = k,ug and r = k(l -pz)*(S2- I)&, 
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